
Liquidity Options - a scalable solution for
liquidity pooling

Nathan Lou

April 8, 2022

Abstract

CryptoSwap introduces the concepts of balancing liquidity and time-
locked liquidity which provide an efficient and scalable solution to decen-
tralized exchanges. When bounded liquidity and time-locked liquidity are
paired, they’re able to replicate the functionality of stock options, which
we’ll call liquidity options. This paper gives a brief overview of some of
the design decisions behind the CryptoSwap protocol, go over how balancing
and time-locked liquidity work, and finally, liquidity options.

1 Introduction

Building a decentralized exchange is a lot like creating an ecosystem. A flourishing
ecosystem is one that is sustainable and scalable - that is, it has the ability to main-
tain its structure (security and efficiency) and improve (expansion) over time in the
face of external stress (reliability).

Decentralized finance (DeFi) will be the future of global finance. However, the systems
that we currently have in place are not scalable nor do they build upon each other.
Systems of the present were built on systems of the past, but in the DeFi industry,
systems of the past (previous versions) have to be completely be scrapped in order to
bring about a new version. Not only is this method unfit for scalability, but it also
discourages innovation as it sends the idea that innovation is building an entirely new
system rather than improving upon a previously existing system. What the Cryp-
toSwap protocol will do is establish a method of innovation that builds upon the next,
allowing for innovative ideas to build upon one another.

CryptoSwap has a few defining characteristics that set it apart from other decentralized
exchanges:

1. Balancing Liquidity

2. Time-Locked Liquidity

3. Liquidity Options

1



2 How it works

Liquidity pools are initialized by depositing a liquidity pair, which is a price-determined
equally-weighted pairing of two assets X and Y. Suppose that a liquidity provider has
a constant price k ∈ R , thus for two tokens X and Y, the price graph would look
something like this:

So swapping dx coins of X for Y would result in the user receiving -dy = dx of Y. The
price is determined by -dy/dx which in this case is always exactly 1. This function in
particular is known as the constant-sum function x+ y = k and can be generalized for
any number of coins Xi resulting in a function:∑

xi = k

However, in the reality, price ratios between two assets -dxi/dxj may not always be 1,
we can probably only expect this of wrapped assets or stablecoins. But even for those
assets we cannot always expect them to always retain a 1-to-1 ratio. CryptoSwap wants
to prioritize retaining efficient functionality in the worst case scenario so we certainly
can do better.

Most decentralized exchanges, notably Uniswap [1] use variants of the constant-product
function:

xy = k

The standard constant-product function is a great base to start from because it is zero-
assumption in nature. Unlike further optimizations that will be shown later on, the
constant product function on relies on the fact that liquidity pools are balanced in the
beginning, which is a given since liquidity pairs are essentially forced to balance the
liquidity pool. From then on it will “rebalance” itself. The constant-product function
is a great base to start from because it is the most efficient constant function market
maker under no assumptions. The graph would look something like this:

2



Although there is nothing bad about arbitrageurs, in fact they are necessary for any
market to be efficient, we can’t rely on them during volatile times and arbitrageur prof-
its can take away from liquidity provider profits. Thus it is crucial for the protocol’s
design to minimize arbitrageur profits.

Although it’s predecessors utilized the standard constant-product formula, Uniswap v3
performs some notable optimizations. By introducing the idea of concentrated liquidity,
i.e liquidity bounded within some price range [pa, pb]. Uniswap v3 is further able to
replicate dynamic market making by using liquidity providers as the “dynamic” vari-
able. This is great because it allows liquidity providers to be able to compete against
arbitrageurs. After all, to get rid of arbitrage, we must arbitrage first.

Under Uniswap v3’s concentrated liquidity there are virtual reserves and real reserves.
Virtual reserves is liquidity concentrated to a smaller price range while real reserves is
general liquidity in the standard constant product. Let [pa, pb] be the bounds for the
virtual reserves then for L =

√
k, the real reserve positions can be described by the

curve:

(x+
L
√
pb

)(x+ L
√
pa) = L2

The graphs below is a side by side comparison of the relationship between real and
virtual reserves (source: Uniswap v3 whitepaper):

3



2.1 Problems With Current Models

Although protocols Uniswap v3 have made quite a few optimizations to the constant
product function that make pricing more efficient, a major problem is that these mod-
els can sometimes break. The problem is not that these models can break when their
assumptions fall apart, this is the real world after all. Instead, the problem is that
these smart contracts may be further optimized or changed in the future to prevent
them from falling apart. Why is this a problem?

Most decentralized exchanges have numerous version updates that force liquidity providers
to migrate from their liquidity pool. Not only does this defeat the purpose of ”passive
investing” but is also extremely inefficient at scale. Hypothetically, let’s say there is a
global adoption of decentralized exchanges. Imagine how long it would take to migrate
a liquidity pool of 1 trillion dollars, not to mention the gas fees of that process.

For decentralized exchanges to see global adoption and efficiency at scale. It is imper-
ative that we find a solution that is flexible in assumptions, infinitely optimizable, and
does not force a change in the main smart contract.

3 Balancing Liquidity

The core concept that the CryptoSwap protocol introduces is the balancing liquidity
function - a function that “balances” the core liquidity pool. For dollar denominated
value of assets x, y with we define the balancing liquidity function as

xw1yw2 = k

for any {w1, w2 ∈ R>0 | w1 + w2 = 2}. Similarly, we define a symmetric balancing
liquidity function as

xw2yw1 = k

We use the balancing liquidity function and it’s symmetrical balancing liquidity function
to effectively “bound” the main liquidity pool xy = k.

4



3.1 Perfectly Balanced Pools Are Constant Product Proof

The graph above is an example of a set of perfectly balanced symmetric liquidity pools.
We want to show that under the constant product function assumptions (perfectly bal-
anced), symmetric balancing liquidity pools replicate constant product functions. That
is, we assume that x1 = x2 = x, y1 = y2 = y. Then when calculating the geometric
average between these pools, we get:

(xw1yw2)(xw2yw1) = k2

xw1+w2yw1+w2 = k2

x2y2 = k2

√
(xy)2 = k

xy = k

This means that under a perfect market conditions, i.e a scenario where the spot
price matches the true price of a given set of assets, symmetric liquidity pools will be no
different from the constant function market maker, and the constant function market
maker will reflect the true price.

3.2 Equivalence At Equilibrium Proof

By introducing balancing liquidity we have effectively come up with a method to repli-
cate constant product market makers while also allowing for the ability to arbitrage on
both sides of an AMM trade. However, what if a scenario pops up where xoyo = ko,
xi

w1yi
w2 = ki, xi 6= xo, yi 6= yi, and ki 6= ko? Arbitraguers on the liquidity provider’s

side will always be able turn xi = xo and yi = yo by depositing or removing liquidity
to the balancing liquidity pool. This implies that under the state when x = y, ki = ko.

3.3 Asset Pricing Model Part 1

In this section we will go over:

1. How the constant function market maker determines theoretical price.

2. How the balancing liquidity function affects this price.

The theoretical price p at time t can be computed by dividing the reserves of asset a
and reserves of asset b.

pt =
rat
rbt

5



Under this model, there is price slippage, especially for large movements of assets. To
visualize this slippage mathematically, calculate the realized price. Suppose we sell ∆x
for ∆y at the price ratio above including a 1− φ trading fee for liquidity providers.

(x−∆x)(y + φ∆y) = k

φ∆y =
xy

x−∆x
− y

φ∆y =
xy − y(x−∆x)

x−∆x

φ∆y =
y∆x

x−∆x

∆y =
1

φ
· y∆x

x−∆x

Since price is the ratio of ∆y received and ∆x paid. Divide both sides by ∆x getting:

∆y

∆x
=

1

φ
· y

x−∆x

Suppose that there was no trading fee, so φ = 1. We see that as amounts traded get
smaller, i.e ∆x→ 0, the realized price tends to the theoretical price.

pt = lim
∆x→0

(
∆y

∆x
) = lim

∆x→0
(

y

x−∆x
) =

ra
rb

So let’s go on to how the balancing liquidity function can not only reduce price slippage,
but also help obtain a price that more closely matches the market (true) price. Let’s
first define a balancing price function as the curved obtained by the geometric mean
between symmetric balancing price pools a and b√

(x
w1
a yw2

a )(x
w2
b yw1

b ) =
√
kakb

Let {P0, P 1P 2, ..., P i, ..., P n} be the total reserves of the liquidity pools where Pi repre-
sents the ith pair of balancing price liquidity pools and P0 is the base liquidity pool with
the function xy = k. Moreover, let {w,w1, w2, ..., wi, ..., wn} represent the “weight” of
each respective liquidity pool. So for each for each balancing liquidity pool Pj where
0 ≤ i, j ≤ n, wj is the arithmetic weight.

wj =
Pj∑n
i=1 Pi

We will use these weights to find an alternative method to price assets but we first need
to prove that under equilibrium conditions, i.e x=y, the balancing price function will
always be equivalent to the constant function market maker to ensure that we have a
point in which this system wont fail and will tend to revert to.

6



3.4 Trading at Equilibrium State

Let x
w1
a y

w2
a = ka and x

w2
b y

w1
b = kb be symmetric liquidity pools and xy = k be the

main liquidity pool.

For balancing price function
√

(xw1
a yw2

a )(xw2
b yw1

b ) =
√
kakb, we will show* that at point

x = y,
√

(xw1
a yw2

a )(xw2
b yw1

b ) = xy = k.

Note that that for xa = x + ∆a and ya = y + ∆a note that -∆a cannot exceed x or y
since xa, ya > 0. Additionally, ka = (x+ ∆a)

2 kb = (x+ ∆b)
2 so

√
(xw1

a yw2
a )(xw2

b yw1
b ) =

√
(x+ ∆a)2(x+ ∆b)2

= (x+ ∆a)(x+ ∆b)

= x2 + x∆a + x∆b + ∆a∆b

= k +
√
k(∆a + ∆b) + ∆a∆b

Since these are just constants, then we can just adjust ka and kb accordingly so that√
kakb = k +

√
k(∆a + ∆b) + ∆a∆b

√
kakb −∆a∆b

(∆a + ∆b)
= k +

√
k

Thus, we have shown that that every balancing price function within the constraint will
have an equilibrium state equal to that of the constant product market maker. And
since the function will always tend towards this equilibrium state by design (similar to
that of the assumptions of a CFMM), the balancing price function will always tend to
trade towards being perfectly balanced.

3.5 Asset Pricing Model Part 2

For each balancing price pool, i, and asset reserves at each pool rai and rbi , define the
theoretical price as

pi =
rai
rbi

Define the balancing price pb as

pb =
∏

p
wj

i

3.6 Price Effect

In the real world, the balancing price may more closely reflect the true price. However,
in the worst case scenario, this may not be true. So we won’t let this price affect the
CFMM quoted price. In the next section, we will see how liquidity options will use
the balancing price to “regulate” the main liquidity pool.

7



4 Liquidity Options

Balancing liquidity can be used to manipulate prices in the short term if not time locked.
For example, a malicious party can deposit a huge leveraged pair of assets (like x1.9y0.1)
to drive down the price of x then purchase x and quickly remove liquidity before the
market reacts.

Therefore, we must time-lock balancing liquidity to allow time for arbitrageurs on the
liquidity providers’ side to punish malicious liquidity providers. To put it simply, liq-
uidity options are balancing liquidity but with a time-lock and several more rules in
order to address the inefficiencies between the theoretical and real world.

4.1 Liquidity Options vs Stock Options

Liquidity options being called “options” may be questionable at first. However, in liq-
uidity options, the liquidity provider takes the position of an option writer/seller while
the code takes the position of an option buyer where the smart contract is ultimately
the one that decides whether or not to take a position.

In stock options there is “in the money” and “out of the money”. In liquidity options
there are “in the bounds” or “out of the bounds” which is essentially whether or not a
balancing liquidity pool is within or not within the quoted and balancing prices’ range.

In the bounds ∈

{
[pt, pb] pt ≤ pb

[pb, pt] pb < pt

Out of the bounds 6∈

{
[pb, pb] pt ≤ pb

[pb, pt] pb < pt

Based on these bounds, the smart contract will decide whether or not to “balance” a
liquidity pool or not and the priority in which these pools are balanced. These will be
discussed in the implementation. For now, we will go over the rules of liquidity options.

4.2 Time-Locked Liquidity

Time-locked liquidity works exactly like it sounds, balancing liquidity is locked for a
certain period of time, let’s say 24 hours, 72 hours, 1 week, or 1 month.

Similar to stock options, liquidity options have time value. The longer a liquidity
provider locks their balancing liquidity for, a rational investor (in this case the algo-
rithm) should value that liquidity over shorter term liquidity. Thus, liquidity providers
locking liquidity for longer periods of time are obligated to higher premiums. More
specific premium models will be discussed in future documentation.

8



4.3 Leverage in Liquidity Options

In the real world, a balancing liquidity pool xw1
i yw2

i = ki will have much less liquidity
than the main liquidity pool xy = k. The difference x − xi = ∆x and y − yi = ∆y
would be so large that arbitrageurs on the liquidity provider’s side would not be able
to manage it. Therefore, in liquidity options, balancing liquidity would be leveraged.
More specifically, the leverage χ would be calculated as:

χ
x =

x

xi

χ
y =

y

yi

4.4 Leverage Creates Perfectly Balanced Pools

Adding leverage will actually make all balancing liquidity pools perfectly balanced.
Here is a quick visualization:

In this example we set the balancing liquidity function to be x
2

2 y
2

2 = k
4
.Without

leverage, the balancing liquidity function seems to just break at a certain point. How-
ever, multiplying χx = x

x
2

= 2 and χ
y = y

y
2

= 2 manages to fix these problems entirely.

This also generalizes to any balancing liquidity function.

xw1
i yw2

i = ki

(
x

xi
xi)

w1(
y

yi
yi)

w2 = xw1yw2 = k

5 Implementing Liquidity Options

Liquidity options are implemented through routing. If the balancing price is not equal to
the main liquidity pool price, then the system will route the transaction to the balancing
liquidity pools smart contract. In which, the balancing liquidity pool will carry out the
swap by first “balancing” the main liquidity pool, then carrying out the swap with the

9



end user. The more inefficient the market is, the higher the transaction fee. Overall,
the main liquidity pool transaction fee can stay at 0.3% while liquidity options routing
can cost the trader anywhere from 0-0.6%, a price to pay for a better price perhaps.
Adding on leverage, there are hefty incentives to try out liquidity options.

References

[1] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer and
Dan Robinson. 2021 Uniswap v3 Core. Retrieved Feb 02, 2022 from
https://uniswap.org/whitepaper-v3.pdf.

10


	Introduction
	How it works
	Problems With Current Models

	Balancing Liquidity
	Perfectly Balanced Pools Are Constant Product Proof
	Equivalence At Equilibrium Proof
	Asset Pricing Model Part 1
	Trading at Equilibrium State
	Asset Pricing Model Part 2
	Price Effect

	Liquidity Options
	Liquidity Options vs Stock Options
	Time-Locked Liquidity
	Leverage in Liquidity Options
	Leverage Creates Perfectly Balanced Pools

	Implementing Liquidity Options

